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Abstract

On the basis of the double-well potential which can be calculated theoretically
and implemented experimentally, the influence of the time delay, number of
particles and asymmetric parameter of the potential on the performance of a
delayed feedback ratchet is investigated. The center-of-mass velocity of
Brownian particles, average effective diffusion coefficient and Pe number are
calculated. It is expounded that the parameters are affected by not only the
time delay and number of particles but also by the asymmetric parameter of
the double-well ratchet potential. It is very interesting to find that the current
transport reversal may be obtained by varying the number of particles of the
system. It is expected that the results obtained here may be observed in some
physical and biological systems because the double-well ratchet potential is
realizable experimentally.

PACS numbers: 05.40.−a, 02.30.Yy

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Noise introduced transport by Brownian ratchets has attracted many researchers’ attention
because of its biological interest as well as its potential technological applications [1–4]. For
example, flashing ratchets can rectify the thermal motion of diffusive particles by exposing
them to a time-dependent, spatially periodic and asymmetric potential [1, 5, 6].

Theoretical and numerical researches of flashing ratchets have revealed a wide range of
rich behavior. The following are a few examples: two harmonically coupled particles in an
overdamped, flashing ratchet display higher center-of-mass velocity and energetic efficiency
than a single particle [7]. Rigid rods of particles in an overdamped, flashing ratchet system
display current reversals as a function of size and temperature [8]. A computational model of
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a polyelectrolyte in a flashing ratchet potential demonstrates that the flexibility of a molecular
Brownian motor can increase its stall force [9]. Large collections of coupled particles in a
flashing ratchet can undergo spontaneous oscillations [10], similar to the cooperative motion
of muscle myosin. In addition, one can easily find some overviews on Brownian ratchets and
related topics [11].

Most of the Brownian ratchets considered until now use the instant information to operate,
that is, they all measure the state of the system and act instantaneously according to that
measurement. However, in realistic experiment devices there is always a time delay between
the input measurement and the output control action due to physical limitations to the velocity
of transmission and processing of the information [12, 13]. For example, in the construction
of the feedback controlled version of the ratchet in [14], time delays in the feedback will be
present due to the finite time needed to take a picture with a CCD camera, transmit it, process
it and implement the resulting decision of switching on or off the potential. Feedback flashing
ratchets have been recently suggested as a mechanism to explain the stepping motion of the
two-headed kinesin [15]. The topic of delay controlled transport has been also addressed by
some authors [16, 17]. In another context, a feedback scheme has been used to perform the
control of chaotic trajectories in inertia ratchets [18]. Thus, it is necessary to consider and
calculate the effects of time delays in the feedback ratchet.

At present the transport reversal in virtue of the variation of the system parameters is a well-
known phenomenon in Brownian motors that can be produced by varying the characteristics of
the non-equilibrium fluctuations [19] or the parameters of the time-dependent perturbation that
drives the system out of equilibrium [20, 21]. However, in most studies of flashing ratchets,
the piecewise linear sawtooth potential was used, which is one of the simplest realizations of
Brownian motors in general [1]. In the present paper we will adopt the double-well potential
[22–25] which can be implemented experimentally to investigate how the structure of the
potential affects the current transportation of Brownian particles in the control of delayed
feedback. The model presented here is clearly different from those adopted in [16, 17].
We will study the impact of time delay on the effectiveness of the feedback control strategy
introduced in [26], so that one can understand more easily how information can be used to
improve the performance of the delayed feedback system. It is found that the current reversal
of Brownian particles in the double-well ratchet potential can be achieved by varying the
number of particles of the system.

2. A delayed feedback ratchet

The feedback ratchet considered here consists of N Brownian particles at temperature T0 in a
periodic potential U(x). One can choose different periodic potentials according to the different
aims. Now, the double-well ratchet potential [22–25]

U(x) = −U1 e−sin2(πx)/2 sin2(πR) − U2 e−sin2(π(x−d))/2 sin2(πR) (1)

is used to replace the piecewise linear sawtooth potential used often in literature and its
schematic diagram is shown in figure 1, where U1 and U2 determine the depth of the stronger
and weaker wells, respectively, which are separated by a distance d = 0.36 and have width
R = 0.15, the asymmetry of the potential is β = U1/U2 = 10/9, x is the position, and the
ratchet period L = 1. The parameters U1, U2, d, R, x and L have the same length unit and
the ratio of one of them to another is always a dimensionless parameter. The force acting on
the particles is F(x) = −U ′(x), where the prime denotes the spatial derivative. The state
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Figure 1. The schematic diagram of the double-well ratchet potential U(x).

of this system is described by the positions xi(t) of the particles satisfying the overdamped
Langevin equations

γ ẋi(t) = α(t)F (xi(t)) + ξi(t) (2)

and the average force acting on each particle is

f (t) = 1

N

N∑
i=1

F(xi(t)), (3)

where γ is the friction coefficient (related to the diffusion coefficient D through Einstein’s
relation D = kBT0/γ ), ξi(t) are Gaussian white noises of zero mean and variance
〈ξi(t)ξj (t

′)〉 = 2γ kBT0δij δ(t − t ′), and α(t) stands for the action of the controller. There
is a controller in the system, which measures the sign of the average force and, after a time τ ,
switches the potential on (α = 1) if the ensemble average of the force is positive or switches
the potential off (α = 0) if it is negative. Thus, the delayed control protocol considered here
may be expressed as

α(t) =
{
	(f (t − τ)), t � τ

0, otherwise,
(4)

where 	 is the Heaviside function [	(x) = 1 if x > 0, else 	(x) = 0 ].
It is interesting to note that, although there are no explicit mechanical interactions between

the particles, the use of information in the control of the system introduces a coupling between
the particles, in that the force acting on any particle depends on the positions of the other
particles. For this reason, for closed-loop strategies [26–32] the average velocity is dependent
on the number of particles in the ensemble, in contrast to open-loop policies [2, 5] which, for
non-interacting particles, output the same velocity regardless of the ensemble size [33].

The first basic quantity of interest in the system is the center-of-mass velocity of N
Brownian particles, which is given by the relation

Vcm = lim
T →∞

1

NT

N∑
i=1

∫ T

0
ẋi (t) dt . (5)

In order to quantify the transport coherence of the coupled Brownian particles, we
introduce the Pe number [34–36], i.e.,

Pe = |Vcm|L
Deff

, (6)

where Deff is the average effective diffusion coefficient determined by

Deff = lim
T →∞

N∑
i=1

〈xi(t)
2〉 − 〈xi(t)〉2

2T N
. (7)
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(a) (b)

Figure 2. The curves of (a) the center-of-mass velocity Vcm and (b) the average effective diffusion
coefficient Deff varying with the time delay τ for different numbers of particles N.

The Pe number describes the competition between the directional drift and the stochastic
diffusion of the particle. The directional drift will increase with the increase of the Pe number.
Thus, the larger Pe number means that the drift predominates over the diffusion and there is
high transport coherence.

The numerical solution of equation (2) is performed by using the stochastic Runge–Kutta
algorithm. The transport processes of N particles are simulated and each trajectory consists
of 105 steps of integral with the small time step of h = 10−3. In the following calculation, the
parameters L = 1, d = 0.36, R = 0.15, U1 = 3.2, β = U1/U2 = 10/9, γ = 1, D = 1 and
kBT0 = 1 are chosen, where the unit of energy is the Joule.

3. Results and discussion

In the double-well ratchet potential, we deal with a collective ratchet compounded of a few
particles (less than N < 100). It will be shown that the center-of-mass velocity Vcm, effective
diffusion coefficient Deff and Pe number are some functions of the various parameters in the
system.

3.1. The influence of the delay time

Figure 2(a) shows the curves of Vcm varying with the delay time τ for different numbers of
particles. It is seen that the center-of-mass velocity of the system is a monotonic function of
the delay time τ but not a monotonic function of the number of particles N. For increasing
time delays the correlation between the present sign of the average force and the measured
sign that the controller actually uses decreases. It can be understood that the decrease in the
center-of-mass velocity is a consequence of the loss of information of the present sign of the
average force. Thus, the controller action begins to be uncorrelated to the present state of
the system and it effectively begins to act as an open-loop ratchet [30]. The result is compatible
with that obtained in [30, 32]. On the other hand, it can be clearly seen that the direction of the
net current is closely dependent on the number of particles. We will discuss the phenomenon
in detail below.
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(a) (b)

(c)

Figure 3. The curves of (a) the center-of-mass velocity Vcm, (b) the Pe number and (c) the average
effective diffusion coefficient Deff varying with the number of particles N for different delay
times τ .

Figure 2(b) shows the effective diffusion coefficient Deff of Brownian particles as a
function of the delayed time τ for different numbers of particles. It is easily found that the
effective diffusion coefficient Deff of Brownian particles decreases monotonically with the
delayed time τ . For the few particle case, particles diffuse more easily, but for the ‘many’
particle case, it is difficult for the diffusion of particles, which means that the fluctuation of
displacement of ‘coupled’ particles decreases with the increase of particles. Therefore, the
average effective diffusion coefficient always decreases with the increase of the number of
particles N.

3.2. The influence of the number of particles

Figure 3(a) shows the center-of-mass velocity as a function of N for different delay times
τ . It is interesting to find multiple current reversals as N increases and the complicated
dynamics that depends on the number of particles. The center-of-mass velocity evolves
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Figure 4. The center-of-mass velocity Vcm as a function of asymmetry of the potential β for
different N.

quasi-periodically and the current may reverse during one reversal ‘period’. But the evolution
is not strictly periodic due to the stochastic nature of the dynamics. As analyzed in
section 2, the force acting on any particle depends on the positions of the other particles
and the average velocity for the closed-loop strategies is dependent on the number of particles
in the ensemble. According to figure 2(a), when the delay time is zero, the current reversal is
found between N = 10 and 20. The critical number of particles at the current reversal may
be obtained through further calculation. It means that the number of particles can lead to the
current reversal. The complex motors can be considered to be the polymer of large biological
molecules. A relatively small change in structure such as the change of N can produce the
reversal of walking direction. This result is compatible with that obtained in [8]. Therefore,
the physical mechanism that leads to the current reversal results from the number of particles
N and the structure of the double-well ratchet potential [22].

In order to understand the phenomenon deeply, we calculate the Pe number as a function
of N for different delay times, as shown in figure 3(b). It can be found from figure 3 that when
the number of particles is large, the Pe number is directly proportional to the absolute value of
Vcm since Deff may be considered to be constant for a fixed delay. The results show that the Pe
number can obtain a maximal value during one reversal ‘period’, which means the ‘coupling’
between the particles can cause high transport coherence. It is also found that the maximal
value of the Pe number depends on the maximal velocity of particles in one reversal period.

Figure 3(c) shows that for the few particle case, the effective diffusion coefficient Deff

decreases quickly when the number of particles is increased; while the number of particles is
large, the effective diffusion coefficient Deff does not vary obviously with the increase of N. It
indicates once again that the larger the number of particles is, the more difficult the diffusion
of particles, the smaller the effective diffusion coefficient, and the slower the decrease speed
of the effective diffusion coefficient.

3.3. The influence of the asymmetry parameter

Figure 4 shows the dependence of the center-of-mass velocity on the asymmetry of the potential
β for some given values of the number of particles. It is clearly seen that Vcm is not a monotonic
function of β so that there is an optimized value of β at which the center-of-mass velocity
attains its maximum. When the asymmetry of the potential β is large, the center-of-mass
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velocity decreases with the increase of β. It is seen that the current enhancement may be
obtained by changing the structure of the potential. It is found that the number of particles
can affect not only the magnitude but also the direction of the current.

4. Conclusions

We have systematically investigated the performance of a feedback ratchet consisting of N
Brownian particles confined in the double-well ratchet potential and discussed in detail the
influence of the time delay, number of particles and asymmetric parameter of the potential
on the center-of-mass velocity of Brownian particles, average effective diffusion coefficient
and Pe number of a delayed feedback ratchet. It is very interesting to find that the current
transport reversal may be achieved by varying the number of particles of the system and
that the current enhancement may be obtained by changing the structure of the potential. The
theoretical results obtained here are significant because they may be observed in some physical
and biological systems by using the experimentally realizable double-well ratchet potential.
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